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The Ffowcs Williams–Hawkings equation represents a standard approach in the
prediction of noise from rotating blades. It is widely used for linear aeroacoustic
problems concerning helicopter rotors and aircraft propellers and over the last few
years, through the use of the so called porous (or permeable) surface formulation, has
replaced the Kirchhoff approach in the numerical solution of nonlinear problems.
Nevertheless, because of numerical difficulties in evaluating the contribution from
supersonic sources, most of the computing tools are still unable to treat the critical
velocities at which the shock delocalization occurs. At those conditions, the attention
is usually limited to the comparison between the noise prediction and the experimental
data in the narrow time region where the pressure peak value is located, but there
has been little attention paid to the singular behaviour of the governing equation at
supersonic speeds. The aim of this paper is to couple the advantages of the porous
formulation to an emission surface integration scheme in order to show if and how the
singularities affect the noise prediction and to demonstrate a practical way to remove
them. Such an analysis enables an investigation of some interesting and somewhat
hidden features of the numerical solution of the governing equation and suggests a
new solution approach to predicting the noise of a rotor at any rotational velocity.

1. Introduction
The analysis of impulsive noise from rotating blades has been the subject of

extensive theoretical and experimental work. Two different forms of impulsive noise
are particularly relevant. One is known as blade vortex interaction (BVI) noise and
mainly concerns the descent flight of an helicopter at a relatively low speed. In this
case, the impulsive character of the noise signature is due to the fluctuating airload
caused by the interactions of the blade with the shed tip vortex. The other is the
high-speed impulsive (HSI) noise which primarily concerns the advancing blade of
a helicopter rotor in level flight as well as the aircraft propellers operating at high
tip speeds. There, the impulsive waveform arises from the high speed itself and the
contribution of noise sources approaching (or experiencing) a supersonic speed. Both
the phenomena are complex to model, but they differ greatly from both physical
and numerical viewpoints. Numerically speaking, the prediction of BVI noise is
more an aerodynamic than an aeroacoustic problem. The main difficulties concern
the accuracy in computing the time-dependent blade pressure distributions, but the
evaluation of the acoustic pressure in the far field is straightforward and can be
obtained easily through the widely used linear formulae. In the estimation of the HSI
noise, both the aerodynamic and the aeroacoustic aspects of the problem become
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difficult to treat, since the fundamental contribution of nonlinear sources is related
to complex noise generation and propagation mechanisms that take place in the flow
field. Then, in addition to the difficulties of computing the requested aerodynamic
data (pressure, density and the three-dimensional velocity field surrounding the blade
at high transonic or supersonic speeds), we have to face the complex emission
phenomena related to the high source speed.

Undoubtedly, the HSI noise represents one of the most annoying forms of noise gen-
erated by rotating blades. Its numerical prediction is made difficult by the occurrence
of shock delocalization and the requirement of accounting for the particular behaviour
of supersonic sources. Thus, in spite of the availability of different theoretical models
and formulations, the calculations are often limited to subsonic source motion and it
is not yet clear what is the best way to approach the problem. It is well-known that the
(FW-H) equation published by Ffowcs Williams & Hawkings (1969) represents the
governing equation of the aerodynamically generated sound. There, the contribution
from the so-called quadrupole source terms is represented by three dimensional integ-
rals theoretically extended to the whole region surrounding the body and affected by its
motion. The evaluation of these volume integrals has always been considered a difficult
and demanding task. Thus, the use of the FW-H equation has usually been limited to
linear problems. Indeed, the volume integration can be easily and successfully applied
up to the occurrence of the delocalization phenomena (Ianniello & De Bernardis 1994;
Ianniello 1999b); it does not require any pre-processing on the computational fluid
dynamics (CFD) input data and nowadays the issue of the computing effort seems to
be rather questionable. Over the first half of the 1990s, the interest of the aeroacoustic
community was focused on the Kirchhoff approach (Farassat & Myers 1988). By using
an integration (control) surface placed far from the body and acting as a radiating
domain, this method allows an overall noise prediction (from linear and nonlinear
sources) through only surface integrals; then, the undesirable presence of volume terms
is removed and a significant CPU time saving is obtained. Furthermore, the possible
use of a non-rotating integration domain (enclosing the entire blade and the nonlinear
source region) removes the singular behaviour due to supersonic sources motion and
notably simplifies the numerical problems (Lyrintzis 1994; Strawn, Biswas & Lyrintzis
1996). Unfortunately, the main drawback of the Kirchhoff approaches is the close
dependency of the numerical solution on the position of the control surface: if such
a domain is placed in a region affected by the nonlinearities, the noise prediction can
be completely unreliable (Brentner & Farassat 1997).

The use of the FW-H equation for nonlinear problems found a renewed interest
among the aeroacousticians during the second half of the 1990s, when it appeared
that this equation could provide a Kirchhoff-like solution. The method is known as
porous (or permeable) formulation since it is a simple rewriting of the solving equation
upon an integration surface placed far from the body, where the usual impermeability
condition does not have to be applied. Although it is evidently similar to the Kirchhoff
method, this approach always provides a physically correct estimation of the acoustic
pressure and the location of the control surface represents merely a convergence
parameter with respect to the contribution of the nonlinear terms. When the surface
collapses upon the body, the impermeability condition automatically turns the porous
formulation into the usual linear formula providing the well-known thickness and
loading noise components. By progressively moving the surface far from the body,
the contribution from the field (nonlinear) quadrupole sources is taken into account up
to a converged solution. It is worth noting that the only formal differences between the
porous formulation and a linear solver lie in the integral kernels and the requirement
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for a larger set of input data (including the velocity and density distributions in
addition to the pressure upon the surface). Then, the existing codes can be easily
modified in order to extend their own capabilities and become a more general-purpose
tools. Unfortunately, the favourable aspects of the porous formulation do not remove
the main problems of the HSI noise prediction. When the shock delocalization requires
the contribution of supersonic sources, the Doppler singularity prevents the use of
standard retarded-time formulae and an alternative approach must be applied.

The appearance of singularities is a feature of the solution of the wave equation with
sources moving at supersonic speeds. This behaviour is related to the occurrence of
multiple emission times of supersonic sources and their own capability of turning from
a single to a multi-emissive status within the revolution period. At these conditions,
an accurate prediction of noise becomes difficult. Besides the direct consequences of
the singularities, the step-by-step changes of the status of the sources produces an
oscillating behaviour of numerical nature which is amplified by the presence of time
derivatives outside the integral terms. Therefore, the computed waveforms can be
heavily affected by numerical errors, or, in the worst case, completely unreliable. At
present, not many numerical procedures can be used to approach this problem directly.
Delrieux et al. (2003) used a fully non-compact integral formulation to compute the
noise at the delocalized condition. The good agreement with the available experimental
data proves the effectiveness of the procedure, but in spite of the absence of any
singularity in the integral kernels and the use of a forward-in-time integration scheme,
the resulting noise signatures are still affected by slight fluctuations. Moreover, some
misleading conclusions are made about the choice of the integration domain and the
possibility that noise prediction could somehow depend on it. Concerning this last
aspect of the problem, Morgans at al. (2005) identifies as the best choice a cylindrical
domain as close to the blade surface as possible while including all transonic flow
regions. The calculations, limited to tip Mach numbers of 0.85 and 0.88, make use
of a standard retarded time formulation (affected by the Doppler singularity) and do
not allow us to extend the integration domain outside the sonic cylinder. Thus, at
the highest rotational velocity, the numerical result exhibits a significant difference
with respect to the experimental data and no indication is given as to the choice of a
suitable integration domain in the supersonic region.

A possible way to account for the contribution of supersonic sources is to use an
emission surface formulation, where at each observer time the manifolds traced by
the retarded locations of the source points are assumed to be integration domains.
Actually, these domains not only correspond to the emission surface Σ concerning
the evaluation of the linear terms, but also to the emission volume V related to
the quadrupole sources, in which case the term emission surface approach is rather
misleading. All the same, this formulation can account for the effects of multi-emissive
sources through the numerical modelling of the time-dependent integration domains.
From a computational point of view, the use of an emission surface formulation is
not the easiest way to predict the noise but, at the same time, it appears to be the
most effective and intuitive representation of the emission phenomena. For instance,
it is easy to understand why a sweptback blade tip generates a reduced noise with
respect to a rectangular tip by looking at the time evolution of the corresponding
emission surfaces and the time-shifted contributions of the source points located
in the tip region. Furthermore, the integral kernels related to the emission surface
formula are simple to compute and are not affected by the Doppler singularity, thus
removing the main restrictions due to the range of the rotational velocity. In spite
of such unquestionable advantages, the emission surface formulation has rarely been
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used because of the difficulties in constructing a supersonic retarded domain. The
only available results at delocalized conditions were presented at the end of the 1990s.
They refer to an approximated solution for the evaluation of the quadrupole noise
only, where the calculations are limited to a two-dimensional flat mesh and to the far
field, in plane observer locations (Farassat & Brentner 1998; Ianniello 1999a, b).

Within this context, the coupling between the emission surface approach (not
affected by the Doppler singularity) and the porous formulation (including the
nonlinear terms contribution through a suitable choice of the control surface) could
reasonably provide a superior approach to the problem of HSI noise prediction.
Such an approach could also clarify some interesting and little known aspects of the
emission phenomena and the corresponding numerical solutions. For instance, the
aeroacoustic analysis of rotors operating at supersonic tip speed still represents an
open question. The few pressure time histories available in the literature date back
to twenty years ago and are often limited to a thickness noise estimation (Farassat,
Pegg & Hilton 1975; Farassat, Padula & Dunn 1987; Amiet 1988; Wells 1991). At
those conditions, the numerical predictions of noise are heavily affected by a singular
behaviour and exhibit some abrupt changes of the pressure waveforms which have
been only partially explained.

Another issue concerns the numerical behaviour of the integral kernels at supersonic
speed. In the emission surface formulation, the Doppler factor does not appear in
the quadrupole (volume) integrals, whereas within the thickness and loading (surface)
integrals it is replaced by another factor, Λ =(1 − 2Mnn̂ · r̂ + M2

n)
1/2 (where n̂ and r̂

represent the unit vectors in the outward normal with respect to the surface and the
radiation directions, respectively) which makes these terms ‘less’ singular. In fact, in
this case, the singularity appears only when Mn (the projection of the Mach number
along n̂) is equal to 1 and, at the same time, n̂ is aligned along the source observer
direction. Many workers recognized Λ as a non-integrable singularity, but a numerical
investigation into its own behaviour has never been carried out. From a theoretical
standpoint, the problem was exhaustively treated by Farassat who developed some
complex formulations in an attempt to provide a numerical answer to the matter.
Farassat concluded that the insertion of the quadrupole sources contribution into
the overall solution removes the singular behaviour due to the Λ term. Nonetheless,
to my knowledge, no numerical demonstration of such an assertion has ever been
shown, except for some academic test cases (Farassat & Farris 1999). Since the
integral kernels corresponding to the porous formulation include the Λ term and, at
the same time, can account for the contribution of the quadrupole sources, the use of
an emission-porous surface formulation outside the sonic cylinder should clarify the
role played by the Λ singularity.

The numerical construction of a supersonic emission surface is not an easy task.
The multiple emission times cause the occurrence of unconnected patches which
temporarily link together and then disappear. This complex time evolution strongly
depends on the kinematics of the problem and the geometry of the numerical mesh;
thus, a solver devoted to modelling the time-dependent Σ surface has to be flexible
and robust enough to manage the different topologies of the CFD meshes. Moreover,
the calculations must be repeated at each observer location and usually require
great accuracy: any irregularity can have devastating consequences on the resulting
waveforms. In order to treat these problems suitably and to implement the emission-
porous surface formulation, a new version of the K-algorithm (Ianniello 1999a, b)
has been developed. This procedure was conceived at the end of the 1990s in order to
estimate the problematic quadrupole source term through an approximate formulation
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proposed by Brentner (1997). Based on the key idea of classifying the retarded
spanwise sections of a structured grid on the grounds of well-estabilished identification
criteria, the algorithm proved to be very effective in the numerical treatment of
delocalized conditions. Nonetheless, the criteria used to identify the retarded sections
were much too restrictive and somewhat oriented towards symmetrical configurations.
Here, these limitations have been removed. Therefore, we are now in a position to
perform these kinds of calculations and to throw new light upon the numerical
solution of such challenging problems.

The structure of the paper is as follows. Section 2 is devoted to the theoretical
background; it presents all the equations used throughout the paper, describes the
numerical problems related to the high-speed emission phenomena and summarizes
the main features of the different solution approaches. Section 3 tests the K-algorithm
and its own capability to construct a supersonic emission surface through two
interesting and unrealistic test-cases. In § 4, the effectiveness of the emission-porous
surface formulation is tested on a critical HSI noise test-bed, with a comprehensive
convergence analysis. The relations between the Λ singularity and the emission
surface and the effects of the singular behaviour on noise prediction are extensively
treated in § 4.1. Then, the attention is focused on the evaluation of a supersonic
thickness noise and a general discussion on the numerical solution of the FW-H
equation at supersonic speeds is proposed (§ 4.2). Subsequently, a strategic choice
of the integration domain aimed at removing the numerical singularities and reducing
the computational effort is addressed and two new solution approaches are proposed.
The first enables the evaluation of the HSI noise by a singularity-free equation (§ 4.3),
whereas the second (strictly valid for in-plane observer locations only) allows us
to reduce the calculations to a simple line integral (§ 4.4). Finally, § 5 summarizes
the main conclusions of the paper, while the Appendix reveals some fundamental
features of the K-algorithm and the key ideas developed to model a supersonic
emission surface numerically.

2. Theoretical background
The Ffowcs Williams–Hawkings equation represents an elegant manipulation of

the fundamental conservation laws of mass and momentum which gives rise to the
following inhomogeneous wave equation written in terms of generalized functions

�̄2p′(x, t) =
∂̄

∂t
{[ρ0vn + ρ(un − vn)]δ(f )}

− ∂̄

∂xi

{[�Pij n̂j + ρui(un − vn)]δ(f )} +
∂̄2

∂xi∂xj

{TijH (f )}. (2.1)

The equation f = 0 is an implicit equation which describes an arbitrary surface,
whose choice heavily affects the physical meaning of the different terms. The fluid
and surface velocity components are indicated by ui and vi , respectively, ρ̃ = ρ − ρ0

is the density perturbation with respect to the undisturbed medium and the subscript
n denotes the projection along the outward normal to the surface. The D’Alembert
operator is given by �̄2 = [(1/c2

0)∂̄
2/∂t2] − ∇̄2, the Lighthill tensor is Tij = ρuiuj +

Pij − c2
0ρ̃δij , where c0 is the sound speed in the undisturbed medium; Pij represents

the compressive stress tensor and �Pij = Pij − p0δij , δij being the Kronecker symbol.
The presence of the Dirac and Heaviside functions shows the different nature of

the source terms: two surface terms directly related to the effects of the discontinuity
f =0 in the flow field and a volume term accounting for all sources acting outside
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the surface f = 0. When f = 0 coincides with the body surface S, the impermeability
condition un = vn simplifies the equation (2.1) and the use of the Green’s function
approach leads to the following integral form

4πp′(x, t) =
∂

∂t

∫
S

[
ρ0vn

r |1 − Mr |

]
τ

dS +
1

c0

∂

∂t

∫
S

[
p̃n̂ · r̂

r |1 − Mr |

]
τ

dS

+

∫
S

[
p̃n̂ · r̂

r2|1 − Mr |

]
τ

dS +
1

c2
0

∂2

∂t2

∫
V

[
Trr

r |1 − Mr |

]
τ

dV

+
1

c0

∂

∂t

∫
V

[
3Trr − Tii

r2|1 − Mr |

]
τ

dV +

∫
V

[
3Trr − Tii

r3|1 − Mr |

]
τ

dV. (2.2)

This equation is written under the assumptions of an inviscid flow (thus reducing
the compressive stress tensor to the scalar pressure field on the blade surface: �Pij =
(p − p0)δij = p̃δij ) and isentropic transformations, for which the pressure–density
relationship can be approximated by the linear term of its series expansion (i.e.
p′ = c2

0ρ̃, where p′ denotes the acoustic pressure disturbance). The V domain represents
the three-dimensional space (outside of f = 0) where the presence of the moving body
affects the state of the medium; r is the source–observer distance, and n̂, r̂ are the unit
vectors in the outward normal (with respect to S) and the radiation directions, respect-
ively. All the integral kernels are evaluated at the emission (retarded) time τ which
represents, for any observer time t and location x, the instant when the contribution to
the noise signature was released. The difference between t and τ is known as the com-
pressibility delay and represents a fundamental feature of the acoustic integrals: it em-
phasizes that sound propagates in the flow field at a finite speed. Equation (2.2) is usu-
ally identified as the retarded time formulation (Brentner & Farassat 2003) and is well
known among the aeroacousticians. By limiting the computations to the surface terms
(known as thickness and loading noise) and if the time derivatives are taken inside the
integrals, the result is Farassat’s formulation 1A (Farassat 1981), the standard retarded-
time formula for rotating-blade problems. The implementation of this formula is
straightforward and can be realized in different ways. In particular, it is possible to use
a forward- or a backward-in-time integration scheme. In the first case, the observer time
t is assumed to be unknown and by moving forward in time (starting from a prescribed
emission time τ ) the resulting noise signature is obtained through an interpolation of
the different, time-shifted sources’ contributions. Alternatively, by fixing the instant t ,
it is possible to go backward in time to compute the corresponding τ and the retarded
integral kernels. Because of the blade rotational motion, this computation requires an
iterative procedure (see the Appendix). The evaluation of the volume terms (the quad-
rupole noise) is not as easy; it requires the knowledge of the flow-field velocity, pressure
and density, and a three-dimensional integration. Furthermore, the quadrupole sources
contribution becomes significant at high transonic speed when the Doppler singularity
|1 − Mr | also affects the reliability of the numerical solution. The singular behaviour
concerns the supersonic sources which can experience a multi-emissive status within
the revolution period: for a supersonic source, the signatures released at different
positions yi (corresponding to multiple emission times τi by the same source point)
can reach the observer location x (at time t) simultaneously. This lack of a one-to-
one correspondence between the observer and emission times depends on the source
speed and the relative source–observer position. From a mathematical standpoint,
there exists an integral formulation which makes this fundamental aspect of the
problem explicit. By suitably manipulating the original four-dimensional integrals
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provided by the Green’s function method, the integral formulation takes the form

4πp′(x, t) =
∂

∂t

∫
Σ

[ρ0vn

rΛ

]
τ
dΣ +

1

c0

∂

∂t

∫
Σ

[
p̃ n̂ · r̂

rΛ

]
τ

dΣ +

∫
Σ

[
p̃ n̂ · r̂
r2Λ

]
τ

dΣ

+
1

c2
0

∂2

∂t2

∫
V

[
Trr

r

]
τ

dV+
1

c0

∂

∂t

∫
V

[
3Trr −Tii

r2

]
τ

dV+

∫
V

[
3Trr − Tii

r3

]
τ

dV

(2.3)

As already mentioned, Λ = (1 − 2Mnn̂ · r̂ + M2
n)

1/2 while Σ and V represent the
emission domains traced by the retarded location(s) y(τ ) of the source points. For
this reason, equation (2.3) which usually includes only the surface terms is known as
the emission surface formulation. Note that the occurrence of multiple emission times
is taken into account through the time-dependent integration domains so that the
Doppler singularity disappears from all the integral kernels. Nonetheless, the surface
terms are still affected by the singular value Λ = 0, occurring when Mn and n̂ · r̂ are
simultaneously equal to +1 or −1. The evaluation of time-dependent integration
domains notably increases the computing effort so that, at subsonic source speed,
the use of equation (2.3) is not as computationally efficient as formulation 1A in the
prediction of thickness and loading noise. Regarding the volume terms, the evaluation
of V may be considered as an academic exercise rather than a practicable solution
and is strictly limited to conditions below delocalization. In fact, the occurrence of
multi-emissive sources makes the evaluation of a supersonic V a very demanding
task. The most practical way to manage the volume terms of equation (2.3) outside
the sonic cylinder is to perform a preliminary integration along a suitable direction
in order to approximate them into some surface integrals. This procedure, originally
proposed by Yu, Caradonna & Schmitz (1978) and revisited by Farassat & Brentner
(1988), is known as far-field approximation and has been successfully applied in the
HSI noise prediction (Farassat & Brentner 1998a, b; Ianniello 1999a, b). By assuming
the quadrupole source strength

Qij =

∫
nq

Tij dnq, (2.4)

the three-dimensional integrals of equation (2.3) can be rewritten in the form

4πp′
Q(x, t) =

1

c2
0

∂2

∂t2

∫
Σq

[
Qrr

r

]
τ

dΣq

+
1

c0

∂

∂t

∫
Σq

[
3Qrr − Qii

r2

]
τ

dΣq +

∫
Σq

[
3Qrr − Qii

r3

]
τ

dΣq. (2.5)

In practice, equation (2.4) approximates the Lighthill tensor contribution by an
equivalent source distribution on a flat mesh Sq placed on the rotor disk and suitably
extended ahead of the leading edge, behind the trailing edge and off the blade tip
in order to account for the delocalized noise sources. The Sq mesh is characterized
by the outward normal direction nq and corresponds to the emission domain Σq

appearing in (2.5). Note that this equation does not exhibit any singularity, thus it
appears to be the most practicable way to determine the quadrupole source terms
of the FW-H equation at supersonic speed (provided the supersonic Σq surface can
be constructed). Unfortunately, the basic assumptions of the far-field approximation
are rather restrictive. The use of equation (2.4) assumes the equality of the emission
times at sources symmetrically placed with respect to Sq and collapses all data along
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nq into a single point. These assumptions can be considered valid only in the rotor
plane and at far-field observer locations, so that the evaluation of the quadrupole
noise at delocalized conditions and out of the rotor plane still represents an open
question.

The porous formulation consists of integrating the fundamental equation (2.1) on
a surface Sp placed far from the body, where the usual impermeability boundary
condition does not have to be applied. Although such a method had already been
treated by Ffowcs Williams & Hawkings (1969), it was first implemented for rotors
by Di Francescantonio (1997), by assuming

Ui =

(
1 − ρ

ρ0

)
vi +

ρ

ρ0

ui, (2.6)

Li = Pij n̂j + ρui(un − vn). (2.7)

In this manner equations (2.2) and (2.3) are formally not altered and give rise to
the following solving formulae

4πp′(x, t) =
∂

∂t

∫
Sp

[
ρ0Un

r |1 − Mr |

]
τ

dSp

+
1

c0

∂

∂t

∫
Sp

[
Lr

r |1 − Mr |

]
τ

dSp +

∫
Sp

[
Lr

r2|1 − Mr |

]
τ

dSp + p′
Q(x, t), (2.8)

4πp′(x, t) =
∂

∂t

∫
Σp

[
ρ0Un

rΛ

]
τ

dΣp

+
1

c0

∂

∂t

∫
Σp

[
Lr

rΛ

]
τ

dΣp +

∫
Σp

[
Lr

r2Λ

]
τ

dΣp + p′
Q(x, t), (2.9)

where Σp represents the retarded domain corresponding to the Sp porous surface. The
term p′

Q(x, t) still indicates the noise contribution of the field quadrupole sources in
the region outside the f =0 domain. Thus, if the control surface Sp is suitably placed
in order to include all the sound sources, the contribution p′

Q(x, t) tends to zero and
an overall noise prediction is achievable through the computation of surface integrals
only. Note that by moving Sp in the flow field, the surface source terms lose their
physical meaning of thickness and loading noise related to the fluid displacement and
airload distribution caused by body motion. Then, in the following, we will refer to
these terms as to pseudo-thickness and pseudo-loading terms.

The porous formulation represents the most suitable and effective way to solve
the FW-H equation. Equation (2.8) is generally adopted in a form analogous to
formulation 1A by inserting the time derivatives into the integral sign, but suffers the
well-known limitations due to the Doppler singularity. On the contrary, because of the
difficulties in constructing the emission surface Σp outside the sonic cylinder, equation
(2.9) has never been used. Nonetheless, it represents a comprehensive solution of the
FW-H equation, free from the Doppler singularity and volume integral terms, which
could be theoretically used at any range of the rotational velocity. We will refer to
this equation as to the emission-porous surface formulation. The main drawbacks of
such an equation are the requirement of modelling a supersonic emission surface and
the presence of the Λ = 0 singularity: in the following sections it will be explained
how to address both of these problems.
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3. The K-algorithm
The K-algorithm is a procedure conceived to model the time evolution of a

supersonic Σ surface for a rotating body. Starting from a structured numerical mesh
where it is possible to identify a fixed number of spanwise sections, the basic idea
is to use some well-established identification criteria aimed at classifying their own
retarded configurations. In this manner, the emission domain can be divided into a
finite number of homogeneous patches composed of sections of the same type. This
procedure enables modelling of the unconnected regions occurring and collapsing in
the field, owing to the appearance and disappearance of multiple emission times and
corresponding to the single- and multi-emissive status of the supersonic sources. At
each time step, the noise is determined as the sum of the integral terms computed
on each patch. Since the acoustic pressure is related to a time derivative of the
integral terms, great accuracy is required in the calculation of the Σ(t) function.
Then, whatever the resolution of the starting mesh may be, the algorithm must adopt
a step-by-step refinement of the mesh, both along the spanwise direction (to model
the boundaries of the adjoining patches) and the chordwise direction (to account
suitably for the multi-emissive status of supersonic sources).

The first version of the algorithm was developed to evaluate the HSI noise for a
typical test bed (the UH-1H non-lifting, hovering rotor and an in-plane observer)
through the far-field approximation in the form proposed by Brentner (1997). The
noise predictions exhibited a good agreement with the available experimental data
(Ianniello 1999a, b). They confirmed both the capability of the procedure to model the
Σ domain accurately outside the sonic cylinder and the effectiveness of the emission
surface formulation (although in an approximated solving form) in the numerical
treatment of delocalized conditions. Subsequently, the algorithm was modified in
order to treat some different blade geometries and to reduce the requested CPU
time (Ianniello 2001). Nevertheless, the criteria used to identify the possible retarded
configurations of the spanwise sections (strictly related to the change of curvature of
Σ) limited the range of applicability to symmetrical problems. The criteria did not
allow the modelling of the time evolution of the emission surface during the whole
revolution period. They could manage only open sections, where it was possible to
identify a leading and a trailing edge unambiguously. Recently, the K-algorithm
has been thoroughly revisited in order to overcome these restrictions. The present
version removes any limit about the number of branches corresponding to a retarded
and fragmented section: it does not link the identification criteria to any geometrical
condition occurring during the revolution. Thus, it is possible to consider asymmetrical
configurations, with complex geometries and observers placed out of the rotational
plane. The only restriction concerns the number of emission times for each source (lim-
ited to 3), although the procedure could even be extended to account for a higher value.

The computation of a supersonic Σ surface is a complex problem. Great care must
be used to model the emission domain correctly and to avoid any numerical fluctuation
in the resulting noise waveform. A description of the different strategies used to
address the problem is given in the Appendix. In order to show the robustness of the
algorithm in modelling a supersonic emission domain, two critical and unrealistic test
cases are examined. A sketch of the test configurations is drawn in figure 1. The first
problem refers to a sphere with a diameter of 2m, centred at (0, 1.5, 0) and rotating
counterclockwise at a velocity of approximately 5500 r.p.m.; this value corresponds
to a Mach number at the inner and outer (spanwise) sections of 0.84 and 4.23,
respectively. The numerical mesh is 40 × 101 (number of sections × number of nodes
at each section) and is not stretched. A spherical geometry at such a high rotational
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Figure 1. The two configurations proposed to test the capability and robustness of the
K-algorithm in modelling a supersonic emission surface.

speed represents a difficult test case for the numerical procedure since the emission
surface undergoes an impressive deformation and exhibits a complex multiconnected
shape. The observer is placed in the Z =0 symmetry plane at (3, 0, 0), very close
to the ‘tip’ section. The second test case concerns an open cylinder with a length
of 7 m, a radius of the circular section of 4 m and discretized through an 80 × 201
mesh. The rotational velocity is set to 2000 r.p.m. so that the whole body experiences
a supersonic speed (in a range of the Mach number between 1.23 at the hub and
4.54 at the tip). The most anomalous aspect of this test, however, is the observer
located at (4, 0, 0.5), a point intersected by the body’s trajectory. Note that the out-of-
plane position gives rise to a heavily fragmented and asymmetrical emission surface.
Thus, the identification criteria used to recognize the different integration patches are
severely tested.

Figure 2 depicts the emission surfaces corresponding to the sphere at two subsequent
time steps. In figure 2(a), Σ consists of two unconnected domains, whereas figure 2(b)
shows a single manifold with a complex shape, characterized by both convex and
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Figure 2. Emission surfaces corresponding to the supersonic sphere of test case 1. The observer
is located in the Z =0 plane of symmetry, at half a metre from the tip section. The light
regions point out the complex topology assumed by some integration patches, while the curves
depicted upon the surfaces represent the boundaries of the patches.

concave regions. The black lines show the boundaries of the different integration
patches determined by the algorithm. The most interesting aspect of figure 2 is that the
light patches, composed by three separate branches, correspond to spanwise sections
where not all the source points have multiple emission times. Such a configuration
was not included among the possibilities taken into account by the old version of the
algorithm and prove the effectiveness of the present identification criteria.

Figure 3 shows a sequence of six time steps for test case 2, approximately corres-
ponding to the intersection of the emission surface with the observer location. In
order to appreciate the evolution of some hidden regions, a portion of the rendered
surface has been depicted with a different greyscale and a higher level of translucency.
Still, the lines correspond to the boundaries of the integration patches and point out
the accuracy of the implemented step-by-step mesh refinement process (Appendix).
A sort of spherical hollow centred at the observer appears inside the emission
domain (figure 3a) and grows (figure 3b–d) up to provide a toroidal three-dimensional
manifold (figure 3e, f ). Let us note that the out-of-plane observer position makes
the configuration asymmetrical: the inner cavity connects to the upper region of Σ

(figure 3c) while the lower one is still separated from it. The complexity of these
configurations and the capability of the algorithm in modelling the corresponding
emission surface provides confidence to face the problem of evaluating the surface
integrals of equation (2.9).

4. Numerical results
In order to show the capability of the emission-porous surface formulation in the

numerical prediction of noise, we will focus our attention on the critical test-bed of
the UH-1H non-lifting hovering rotor at Mtip = 0.95, for which a set of experimental
data is available. The pronounced shock delocalization occurring at such an operating
condition allows a deep consideration of the numerical aspects we are interested in
and allows us to test the robustness and reliability of the new K-algorithm. The
necessary aerodynamic input is provided by an Euler code (Kuntz et al. 1995).



90 S. Ianniello
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Figure 3. Emission surfaces corresponding to the supersonic cylinder of test case 2. The
spheroidal cavity at (a) is centred at the out-of-plane observer location; it grows in the
subsequent time steps to provide a sort of toroidal surface.

The numerical mesh is composed of 41 layers in the direction normal to the rotor
disk, 97 sections along the span and 129 nodes chordwise. It exhibits a pronounced
sweep and extends significantly beyond the sonic cylinder. The chordwise distribution
of nodes is not uniform and depends on the shock-capturing procedure implemented
in the aerodynamic solver. Moreover, each grid layer widens moving towards the
sweptback tip region, thus assuming a rather irregular cylindrical shape. The blade
chord is c = 0.0762 m and the observer is located in the Z = 0 plane of symmetry,
at a distance of 3.09R from the rotor hub (the rotor radius R = 1.045 m). A three-
dimensional sketch of the numerical grid is shown in the figure 4(b), where only the
first (k = 1) and the last (k = 41) layers have been drawn for clarity. The top-view
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Figure 4. (a) Top and (b) three-dimensional views of the CFD Euler mesh used for calcula-
tions. For clarity, only the first (k = 1) and last (k = 41) grid layers are shown; (a) shows the
position of the blade and the sonic cylinder corresponding to a blade tip Mach number of
0.95.

(figure 4a) highlights the position of the blade within the first layer and the corres-
ponding sonic cylinder. Despite the complex topological features of the CFD grid,
no interpolation has been carried out on the aerodynamic data in order to avoid any
further approximation and to test the code’s capability in managing an irregular mesh.

The comparison between the available experimental data and the noise prediction
provided by the emission-porous surface formulation is reported in figure 5(b). The
agreement is very good: both the negative peak pressure value and the typical
asymmetrical waveform are well captured. Some minor differences, concerning the
width of the signature and the recompression positive peak value, are attributable to
the numerical nature of the input data. Figure 5(a) shows the integration domain used
for calculations. It corresponds to the k = 35 layer of the CFD mesh, up to the j =70
spanwise section (rotating at a M̂ tip = 1.378). (In the following, M̂ tip will indicate the
rotational Mach number of the outest spanwise mesh section, in order to distinguish
it from Mtip, the actual tip Mach number of the rotating blade.) The rendering em-
phasizes the presence of a lateral surface Sl surrounding the blade and an end surface
Se formed by all sections of the inward grid layers at the same j index. The reported
signature represents a converged solution. Although the very high time resolution ad-
opted for the calculations (2048 time steps in a period, corresponding to an azimuthal
step of 0.175◦) the numerical signature exhibits a smooth behaviour. This result is not
easy to achieve. It has been obtained through a preliminary spanwise refinement of
the input grid and demonstrates the accuracy in the evaluation of the Σ(t) function.

In order to prove the convergence of the numerical solution provided by the
emission-porous surface formulation, extensive work has been carried out. Figure 6
shows six different noise predictions obtained by fixing the same k = 35 layer of the
mesh, and progressively moving the spanwise boundary of the integration domain
from the j = 35 section, close to the blade tip and rotating at a M̂ tip = 0.956, up to
the j = 75 section, corresponding to M̂ tip = 1.451. The effects of the delocalization are
clear. The contribution from sources placed outside the sonic cylinder is essential to
obtain the expected asymmetrical shape of the noise signature. The resulting waveform
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Figure 5. The comparison between the experimental data and the noise prediction provided
by the emission-porous surface formulation for the UH-1H hovering rotor at Mtip = 0.95.
(a) The rendered image of the adopted integration domain highlights the lateral (Sl) and end
(Se) surfaces.

corresponding to M̂ tip = 1.087 (with the end surface Se very close to the sonic cylinder)
seems to match the recompression peak value very well, but overestimates the negative
peak. It represents a not converged solution and the overestimation is due to the phase
shift of the contributions from subsonic and supersonic sources (here not completely
taken into account). This behaviour had already been noted through the use of the far-
field approximation by Brentner (1997) and, in general, by the computations limited
to the subsonic region. A converged solution is achieved at approximately M̂ tip = 1.3.
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Figure 6. Convergence of the numerical noise predictions with respect to the spanwise extent
of the integration domain. The markers represent the experimental data. The k layer of the
CFD mesh is fixed to 35, as shown in figure 5(a).
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For the convergence analysis (figure 7), where the control surface corresponds
to subsequent layers of the grid limited to the j = 70 spanwise section (rotating at
M̂ tip = 1.378), because of the broadening and not uniform distribution of the spanwise
sections on the different layers, a unique distance of the integration domain from the
blade cannot be determined. Nevertheless, in order to estimate how far the Sp porous
surface is from the body, we have considered the ratio

Dk =
|�x|tip

c
,

where |�x|tip represents the maximum chordwise extension of the k layer correspond-
ing to the blade tip section and c is the blade chord. At Dk =1.0, the control surface
collapses on the blade and the noise prediction corresponds exactly to the sum of
thickness and loading noise provided by formulation 1A. By moving away from the
body, the resulting waveform is progressively affected by spurious fluctuations while
the negative peak value moves towards the experimental data. This undesirable beha-
viour is due to the Λ singularity and will be treated in the next section. The converged
solution is reported at Dk = 14.8 (corresponding to the k = 30 layer of the mesh). The
most important result of this study is the unquestionable convergence of the numerical
solution provided by the emission-porous surface formulation. Except for the spurious
peaks caused by Λ = 0 singularity, all the noise predictions are physically correct and
the convergence is related only to the contribution of supersonic sources actually
taken into account in the calculations. Within the range k =26–40 all the numerical
predictions (not reported for brevity) do not exhibit any appreciable discrepancy.

4.1. The Λ singularity

In this section, we will focus our attention on the numerical behaviour of the Λ

singularity of equation (2.9). This is an interesting and little-known issue. Different
authors recognized the Λ term as a true logarithmic and non-integrable singularity
which gives rise to infinite pulses in the computed noise waveforms. From a theoretical
point of view, it is clear that such a singular behaviour does not have a physical
meaning. It depends only on the adopted mathematical model. Farassat treated this
problem extensively. He developed two different formulations (known as formulations
3 and 4) aimed at providing a numerical solution to the problem, but to my knowledge
no result for a realistic configuration has ever been published. These formulations
exhibit similar, but not equal, singular terms and express the contribution of the
nonlinear terms as the sum of surface and line integrals. In particular, formulation
4 rewrites the double divergence of TijH (f ) in the fundamental equation (2.1) in
order to extract some surface quadrupole terms and take the volume term back
to the original form of the Lighthill equation. Intuitively, these surface quadrupole
integrals have to remove the singular behaviour affecting the linear kernels. Again,
the mathematical demonstration of this hypothesis has been provided by Farassat &
Brentner (1998b), where all the singular terms of formulation 4 were proved to
be integrable. Although formulation 4 is notably simpler than formulation 3, the
complexity of these formulations make the development of prediction tools difficult.
Then, our aim is to examine the numerical behaviour of the Λ singularity through
a direct solution of equation (2.9) in order to explore the possibility of removing its
effects in a more practical way.

4.1.1. Relations between Λ and Σ

Before starting the analysis of the Λ effects on noise predictions, let us focus our
attention on the numerical condition Λ =0 and its relation to the emission surface Σ .
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Figure 7. Convergence of the numerical prediction with respect to the outward extent of
the integration domain. The spanwise boundary of the numerical mesh is fixed to j = 70,
corresponding to a Mach number of 1.378.
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Figure 8. Three-dimensional view of a cylindrical strip S rotating at supersonic speed.
(a) shows all the quantities concerning the evaluation of Λ and a critical configuration
of the emission surface (here constituted by two unconnected domains Σa and Σb). The
isocontours refer to the [1/Λ]τ maximum value determined on Σ . (b) An enlargement of the
critical region where [1/Λ]τ tends to a high value.

Figure 8(a) depicts a simple strip of a cylindrical mesh with a circular cross-section
named S (on the left-hand side in the figure). The strip is rotating along the circular
trajectory Ω lying outside the sonic cylinder so that all the source points, generally
corresponding to the centroids of the strip panels, rotate at supersonic speed. For
clarity, the outward unit normal vector n̂ at different points on S is traced. In
particular, the vectors n̂le and n̂te correspond to the strip leading and trailing edges,
respectively. In the figure, t1 and t2 are the tangent lines to Ω passing through the
in-plane observer, while p1 and p2 represent the radial directions perpendicular to
t1 and t2. The condition Λ = 0 occurs when Mn and the cross-product n̂ · r̂ have,
simultaneously, an absolute value equal to 1 and the same sign, r̂ being the unit
vector along the source–observer direction. Note that all these quantities must be
determined at the emission time τ , but the unit normal vectors refer to S (not to Σ)
so that the figure shows exactly the n̂ vectors which must be taken into account (at the
appropriate azimuthal position) upon the emission surface. (In order to understand
better the critical directions which the unit vector n̂ may assume on Σ , the strip S is
traced with dotted lines at the azimuth angles corresponding to p1 and p2.)
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Figure 9. The time evolution of the emission surface subsequent to figure 8. (f ) corresponds
to a new critical configuration where some point on Σ approaches the Λ= 0 condition.

Intuitively, the figure points out that the only source points able to experience the
alignment of the n̂ and r̂ vectors (with respect to the in-plane observer location) are
the strip leading and trailing edges when approaching the critical lines p1 and p2. In
particular, depending on the strip rotational velocity, at p1 the following conditions
can occur:

Leading edge: Mle
n =

v1 · n̂le

c0

= +1; n̂le · r̂1 = +1 ⇒ Λ = 0,

Trailing edge: Mte
n =

v1 · n̂te

c0

= −1; n̂te · r̂1 = −1 ⇒ Λ = 0.

On the contrary, by approaching p2, no critical configuration of the emission
surface can occur, since Mn and n̂ · r̂ always have opposite signs and Λ is always
different from zero. Figure 8 shows a critical configuration of Σ corresponding to the
cylindrical strip rotating at a Mach number of 1.1. The emission surface is constituted
by two unconnected domains, named Σa and Σb, which approach each other. In
particular, Σb widens up to intersect the critical line p1. At this stage of the emission
surface time evolution Λ exhibits a sudden and notable decrease, which is qualitatively
shown by the isocontours traced on the emission surface and representing the [1/Λ]τ
term of the integral kernels. The dangerous distribution of this term is highlighted in
figure 8(b), where an enlargement of the critical region is shown. The subsequent time
evolution of Σ can be appreciated in figure 9 where six different configurations of the
emission surface are depicted. For clarity, these frames only show the trajectory Ω and
the critical direction p1. It is evident that if no source point on the emission surface
approaches the p1 line (time steps a–d) the alignment of the n̂ and r̂ unit vectors
cannot occur and the isocontours reveal a rather uniform, benign distribution of the
[1/Λ]τ term. On the other hand, at time steps e and f , a small region of Σ points at the
observer along a direction close to the local outward normal; thus, Λ can experience a
rapid decrease again. Qualitatively speaking, a change of the strip rotational velocity
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Figure 10. (a) The time history of the [1/Λ]τ maximum value determined on the emission
surface corresponding to the circular strip of figure 8. (b) The same function refers to the
clover section S̃ depicted in figure 11.

(and, correspondingly, Mn) does not modify the main topological features of the
emission surface shown in figure 9. Nevertheless, the critical configurations will occur
at different azimuthal angles, so that the approaching of the critical direction p1 can
occur at the connection (figure 9b) or detachment (figure 9d) stage, or even at the
early appearance of the Σb region in figure 8.

In order to appreciate better the behaviour of the Λ singularity within the revolution
period, figure 10(a) shows the time history of the maximum value of the [1/Λ]τ term as
determined on the emission surface corresponding to the circular strip. The presence of
two cusp points suggests the undesirable consequences that this term can cause on the
kernel functions of equations (2.3) and (2.9). It is worthnoting that the absolute value
of Λ is never really close to zero. In fact, at each step, the mathematical condition
Λ =0 can be experienced by only one source point at one well-defined azimuthal
angle. Therefore, even using a fine mesh and a limited time step, the occurrence of
such a condition can be considered as a fortuitous case. The real numerical reason
for the nearly infinite pulses appearing in the noise predictions is the general trend
that Λ induces on the integral kernels and the requirement of computing a time
derivative on such singular functions. The occurrence of peak values in the time
history of the [1/Λ]τ term strongly depends on the observer location, the rotational
speed and the shape of the surface S. Regarding this last aspect, we note that the
circular section provides two cusp points because of the presence of a single critical
direction p1. Nevertheless, this may not be the general case. Figure 10(b) shows a
[1/Λ]τ time history exhibiting four singular points. It corresponds to the cross clover
section S̃ reported in figure 11 with the four critical configurations assumed by the
corresponding emission surface. This shape is characterized by a concave region
around the leading edge where different outward normal vectors may point towards
the rotor plane. Thus, with respect to the in-plane observer, further possible directions
for the alignment of the n̂ and r̂ can occur within the revolution period. Note the
very complex topology assumed by the emission surface, constituted by two or three
unconnected regions, and the different critical directions (out of the rotor plane at
figures 10a and 10c, and in the rotor plane at figures 10b and 10d) highlighted through
the isocontours of the [1/Λ]τ term.

From a qualitative point of view, accounting for a whole numerical mesh extended
along span and surrounding the blade does not alter the relation between Λ and
Σ . By considering a cylindrical mesh with a straight axis and a uniform spanwise
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Figure 11. The four critical configurations assumed by the emission surface of the clover strip
rotating at Mtip = 1.1. For clarity, the original section shape is shown within each frame, at the
azimuth reference position ψ = 0. These configurations correspond to the four cusp points of
the max[1/Λ]τ time history in figure 10(b).
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Figure 12. (a) The critical curve C representing the envelope of the intersection points between
the trajectories Ωi and the corresponding tangent lines ti passing through the observer location.
(b) The mutual position of the outward normal vector at points A and B on a sweptback tip
mesh is shown.

distribution of a circular section, it is possible to identify a critical curve C. It represents
the envelope of the intersection points between the tangent lines ti to the trajectories
Ωi and the corresponding radial directions pi (figure 12a). At these conditions,
the singular behaviour of the acoustic integrals arises when the emission surface
approaches the curve C. Nevertheless, such a numerical mesh does not represent the
best choice for noise predictions. For instance, figure 12(b) shows a portion of the
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k = 15 layer of the Euler mesh used in the paper. The requirement of capturing the
delocalized shock waves urges the adoption of a sweptback mesh outside the sonic
cylinder. The behaviour of the inner elliptic section S1 (with the leading edge A and
the corresponding outward normal vector n̂A

le) is very similar to the circular shape
depicted in figure 8, but the normal vector n̂B

le at the leading edge B of the outer
section S2 is rotated with respect to n̂A

le. Then, the normal vector n̂B
le will experience the

possible alignment with the source observer direction at an azimuthal angle greater
than at point A. This means that the critical curve C generally differs from the curve
depicted in figure 12(a) and depends on both the observer location and the local
shape of the mesh.

These results show some interesting features of the Λ singularity and provide useful
information about the numerical solution of equation (2.9), where the integration
domain Sp can be chosen in an arbitrary way. It is clear that the Λ singularity may
affect the noise prediction with spurious fluctuations and an unsuitable choice of the
porous surface can even amplify such undesirable effects. On the other hand, the
visualization of the emission surface and the knowledge of the Λ behaviour enable
the recognition of which time steps are affected by the singularity and can give a
useful indication about the reliability of the resulting noise predictions. Even better,
a suitable choice of the porous surface allows us to move the insidious cusp points of
the [1/Λ]τ term far from the negative peak value of the acoustic pressure.

4.1.2. Effects of Λ singularity on noise prediction

This section is devoted to the analysis of Λ effects on the evaluation of the acoustic
pressure time history for the UH-1H hovering blade at Mtip = 0.95. To this aim, we
will first consider an integration domain corresponding to the k = 15 layer of the Euler
mesh (up to j = 70). Note that such a control surface does not provide a converged
solution and is here considered merely to point out some fundamental features of
the numerical solution. The time range of calculations has been extended in order to
cover half a revolution period.

Figure 13 shows the computed noise signatures; in particular, both the pseudothick-
ness and pseudoloading components are reported, with the comparison between the
overall noise prediction and the experimental data. Two nearly infinite pulses affect the
pressure time histories of both the linear components at approximately tΛ1

= 0.020029
and tΛ2

= 0.020783. Nevertheless, the singular behaviour for the thickness and loading
noise terms is of opposite sign so that, in the overall signature, their effect is somewhat
mitigated with respect to the single components. Actually, a mutual opposition
between the pseudolinear terms seems to characterize the different waveforms within
the whole range of calculation except the narrow time region corresponding to the
peak value of the experimental data (taking place at tp = 0.020386). The most promin-
ent feature of the resulting signature is the appearance of two spurious fluctuations at
the critical time steps tΛ1

and tΛ2
. In order to prove that this behaviour is due to the Λ

singularity, figure 14(a) shows the time history of the [1/Λ]τ maximum value determ-
ined on the emission surface and figure 14(b) shows the following kernel functions

J1 =

∫
Σ

[
1

Λ

]
τ

dΣ, J2 =

∫
Σ

[
ρUn

r

]
τ

dΣ, J3 =
1

c0

∫
Σ

[
Lr

r

]
τ

dΣ. (4.1)

As expected, the cusp points occurring in the time history of [1/Λ]τ exactly corres-
pond to the singular behaviour of the J1 term, while J2 and J3 do not exhibit any
relevant feature at the critical time steps tΛ1

and tΛ2
. Because of the elliptic shape of
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Figure 14. (a) The time histories of the [1/Λ]τ maximum value and (b) the kernel functions
defined in (4.1), corresponding to the noise signature reported in figure 13.

the mesh cross-section and the in-plane observer location, these two steps correspond
to the approach of the emission surface to a critical curve C lying in the rotor plane.

In particular, the time range around tΛ1
concerns the early effects of multi-

emissive sources. In fact, the first [1/Λ]τ cusp point corresponds to the occurrence
of unconnected patches which immediately appear being located along a well-defined
direction. A sketch of such a configuration is shown in figure 15. The rendered image
(figure 15a) shows the complex shape of the emission surface while the isocountours
of the [1/Λ]τ term (figure 15b) highlight the alignment of the unconnected regions
along the hidden C curve. The zoom pictures highlight the fragmented critical regions
determined by the algorithm. Very soon, these fragments link together and form
a single manifold which widens and moves away from the critical curve. Figure 16
shows the Σ surface at tp , where the negative peak value of the acoustic pressure takes
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Figure 15. The Σ surface at a time step very close to tΛ1
exhibits a notable fragmentation.

The [1/Λ]τ isocontours reveal the alignment of the unconnected patches along a well-defined
direction, which represents the critical curve C of the problem. The zoom pictures highlight
the fragmented, critical regions as modelled by the algorithm.

place. The isocontours reveal a uniform distribution of the dangerous [1/Λ]τ term and
confirm the reliability of the noise prediction (matching rather well the experimental
data) at such an important stage. The second nearly infinite pulse occurring at tΛ2

is
due to the approach to the critical curve by the trailing edge of the emission surface
and its tendency to separate into two different domains. This is a critical stage, since the
separation takes place through a continuous shrinking of a linking strip which finally
disappears after forming a cusp-edge. Such a configuration is described by Farassat &
Brentner (1998b), where the authors stated that the condition Λ = 0 is equivalent to the
emission surface becoming pointed. Figure 17 shows this detachment stage with the
occurrence of an irregular cusp-edge still partially linking the two regions. Again,
the isocontours reveal clearly the exact location of the critical curve. Finally, while
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Figure 16. At t = tp , when the negative peak of the acoustic pressure takes place, the Σ
surface appears as an extended and single manifold with a uniform distribution of the [1/Λ]τ
term. As mentioned in § 2, the curves appearing on Σ represent the boundaries of the different
patches determined by the algorithm (see the Appendix).

the region linked to the subsonic branch goes on rotating, the other one progressively
reduces: when all the source points come back to a single-emissive status, this region
disappears.

From a numerical standpoint, it is worthnoting that the occurrence and the collapse
of unconnected regions do not affect the noise prediction at all. This is exactly what
we expect, since the physical phenomenon proceeds in a continuous way and the
resulting noise signature must not suffer the possible instabilities related to the numeri-
cal model.

Actually, the computation of the integral terms (usually achieved through a simple
zero-order formulation) requires the evaluation of the area of each panel even though
the number of the y(τ ) retarded locations reduces to a handful of points. Furthermore,
the identification of the different patches always concerns a discrete domain and
strongly depends on the distribution of spanwise and chordwise sources.

Thus, when only a few points experience a multi-emissive status (as around tΛ1
) or

when a critical configuration with a cusp-edge or a hole appears (as around tΛ2
), some

instability of a numerical nature seems to be inevitable. This problem may become
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(a)

(b)

0 1 2 3 4 5 6 7 8 9
[1/Λ]τ

Figure 17. Approaching the time step tΛ2
the emission surface tends to separate into two

different domains. The separation strip shrinks up to form an irregular cusp-edge which is
clearly shown in the zoom pictures. Again, the [1/Λ]τ isocontours highlight the position of the
critical curve.

relevant by diminishing the time step of calculation and can be only partially solved
through the use of a finer mesh. Nonetheless, all the noise predictions reported in this
paper and obtained with a high time resolution exhibit a smooth waveform. These
results confirm (Wells 1991) that the smoothness of the noise predictions is not related
to the time derivative outside the integral terms and depends only on the accuracy
and robustness of the algorithm devoted to modelling of the emission surface. The
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Figure 18. Broadening of the control surface, which corresponds to subsequent k layers of
the CFD mesh, causes the increase of the distance between the critical time step tΛ1

and tΛ2

and the nearly infinite pulses due to the Λ singularity.

comparison between the overall signature and the experimental data in figure 13
proves that the Λ singularity can notably affect the resulting noise prediction. In this
case, it gives rise to fictitious pressure fluctuations which are not easily recognizable
and are not physically related to the noise emission phenomenon. Nevertheless, such
a comparison refers to an integration domain rather close to the blade, which does
not provide a converged solution.

At this stage, by moving the control surface away from the blade, a double purpose
can be pursued. First of all, the contribution from all the nonlinear terms is taken into
account thus obtaining a converged solution; but the most interesting aspect concerns
the Λ singularity effects. Accounting for a wider integration domain corresponds to
increasing distance between the leading and trailing edges of the porous surface Sp .
The cusp points of the [1/Λ]τ term are related to the crossing of the critical curve by
the emission surface. As shown in the previous section, this crossing is directly related
to the Sp leading and trailing edges. Thus, the enlargement of such a domain causes a
shift between the critical steps tΛ1

and tΛ2
on the time axis. In particular, the wider the

integration domain, the larger the time shift. Then, owing to the numerical nature of
the Λ singularity, the choice of a wide control surface should enable the recognition
and isolation of the fictitious pressure fluctuations from the actual noise signature.
This assumption is confirmed by the numerical results. Figure 18 shows four different
noise predictions obtained by assuming the k =20, 25, 30 and 35 layers of the CFD
mesh as integration domain. As expected, the numerical solution rapidly converges
towards the experimental data while the spurious pulses due to Λ move away from
the acoustic pressure waveform. Note that the best numerical result corresponds to
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the outer layer (k = 35) of the mesh: it provides a fully converged solution and the
nearly infinite pulses are so far from the acoustic pressure negative peak that they
could be artificially removed.

4.2. What is a supersonic thickness noise?

The evaluation of the integral terms of the FW-H equation for a blade rotating at
supersonic speed represents a challenging problem. The numerical manipulation of
these terms can provide unexpected results and lead to some questionable conclusions.
This is probably because the solution of equation (2.1) is usually thought of (and
searched for) as the sum of different contributions (thickness, loading and quadrupole
noise), but such a subdivision can be misleading at supersonic speed. Amiet (1988)
and Wells (1988) focused attention on the monopole term of an infinitely thin
blade. The noise signatures were determined through the so called acoustic planform
method, where the three-dimensional Σ domain was reduced to a flat emission surface
corresponding to the blade planform. Amiet was the first to achieve very smooth noise
predictions for a biconvex blade at supersonic speed (Mtip = 1.1). He showed the effects
of a sweptback blade tip on the acoustic pressure waveforms. All the same, the noise
signatures were characterized by the presence of anomalous and abrupt slope changes;
Amiet correctly identified the acoustic planform configurations corresponding to these
singular points, but concluded by hoping for a better understanding of their own
nature. Wells revisited Amiet’s results by accounting for more complex blade shapes.
She discussed the mathematical nature of the singularities and correctly related the
occurrence of the slope changes in the acoustic pressure waveform to the time
derivative of the Σ(t) function.

All these papers, however, assume the monopole contribution at supersonic speed
as being a part of the acoustic pressure field, thus associating it to a definite physical
meaning. The use of the emission-porous surface formulation suggests an alternative
point of view, where the integral term corresponding to the usual thickness noise
component does not represent an actual noise signature. In order to clarify this last
assertion a cylindrical porous surface SA, nearly attached to the blade and with a
biconvex cross-section has been taken into account. This surface allows a qualitative
comparison with the results published by Amiet and highlights some numerical
aspects of the problem. Through a trilinear interpolation procedure, the aerodynamic
data on SA have been extracted from the CFD mesh of the UH-1H hovering rotor
at Mtip =0.95. Then, some different spanwise extensions of the mesh were accounted
for in order to obtain an increased tip Mach number of the integration domain.
(Note that the increased tip Mach number can be obtained by increasing the blade
rotational velocity ω, but this value is intentionally not changed in order to retain
the same operating conditions. This should better explain the fact that the overall
noise prediction (figure 19) does not change and, therefore, the notable differences
occurring in the monopole term waveforms at different Mtip (figure 22) are reasonably
of numerical (not physical) nature.) A sketch of SA is depicted in figure 19, at
the top. The three-dimensional view emphasizes the straight spanwise shape of the
control surface with respect to the sweptback tip shape of the first CFD mesh layer
(partially corresponding to the blade). At the same time, the side view gives an idea
of the very small distance separating the blade from SA. Figure 19(b) shows the
comparison between the overall noise prediction as provided by formulation 1A (with
the integration domain limited to the blade surface) and equation (2.9) through the
use of SA at different tip Mach numbers. As expected, the difference is very small.
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Figure 19. (a) A three-dimensional and side view of the porous surface SA used to qualitatively
reproduce the Amiet results are sketched. (b) A comparison between the noise prediction
provided by formulation 1A and the emission-porous surface formulation by using four
different spanwise extents of SA (corresponding to a tip mesh section rotating at a Mach
number from 1.0 to 1.3).

The physical meaning of this difference is clear: it represents the contribution from
the delocalized noise sources placed in the limited region between the body and the
control surface and outside the blade tip. Beyond a pororus surface tip Mach number
of 1.1, the computational solution is converged. In fact, the main contribution of
the delocalized sources follows the sweptback shape of the CFD mesh outside the
sonic cylinder, so that a further extension of SA along the radial (span) direction,
corresponding to a higher tip Mach number, does not change the noise prediction.

At this stage, the signatures of figure 19(b) can be broken up into different
contributions. Let us focus the attention on the monopole term. Because of the
definition of the Ui operator of (2.6), the pseudothickness component pT can be split
into the following integrals

4πpT (x, t) =
∂

∂t

∫
Σp

[ρ0vn

rΛ

]
τ
dΣp − ∂

∂t

∫
Σp

[ρvn

rΛ

]
τ
dΣp +

∂

∂t

∫
Σp

[ρun

rΛ

]
τ
dΣp

= T1 + T2 + T3. (4.2)
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The first term T1 represents the well-known thickness noise contribution of the linear
formula referred to the porous surface SA understood as a rigid body. Numerically
speaking, it corresponds exactly to the noise term determined by Amiet and claimed
as a supersonic thickness noise signature. As usual, this term depends only on
geometrical and kinematic quantities. On the contrary, the T2 and T3 integrals
are related to the density and velocity three-dimensional distributions upon the
integration domain placed far from the body. Thus, they can be considered as field
terms since they introduce in the numerical solution the effects of the aerodynamic
field quantities. By using a porous surface SA with an outer spanwise section rotating
at M̂ tip =1.1, the evaluation of the different integral terms in (4.2) provides the
waveforms depicted in figure 20. Note that, because of the notable impulsive nature
of the noise signature at such a supersonic speed, the numerical predictions have
been determined with a high time resolution (4096 steps per period), corresponding
to an azimuthal step of approximately 0.088◦. As expected, the T1 time history
reported in the top figure matches very well the analogous noise prediction achieved
by Amiet (1988). The signature is characterized by two singular points, S1 and S2, and
four discontinuity points θ corresponding to an abrupt slope change of the pressure
waveform. Nevertheless, this integral term is numerically balanced by the T2 field term
and just the sum of T1 + T2 (which is not zero) with the last term T3 provides the
reasonable (and expected) pseudothickness noise signature pT reported figure 20(b).
The main features of the T1 waveform are very different from the resulting pT

component. It does not exhibit any trace of both discontinuity and singular points.
The T1 integral contribution seems to have no physical meaning on its own. We are
conscious that these results refer to a blade rotating at a tip Mach number equal to
0.95, not to 1.1. Furthermore, when the SA control surface collapses upon the body,
the impermeability condition imposes a mutual cancellation between T2 and T3,
while the T1 contribution still represents a part of the solution. In this case, however,
the beneficial effect of T2 on T1 should be replaced by some other field contribution
(from the quadrupole term, as indicated by formulation 4) in order to provide a
reasonable noise prediction. On the other hand, if an actual supersonic tip speed
blade were taken into account, the use of the emission-porous surface formulation
should provide exactly the same T1 term, and a different behaviour could concern
merely the field terms T2 and T3 (because of the different density and velocity fields).
These results suggest that the T1 term does not represent the thickness noise from a
supersonic tip speed blade; it is probably not a noise signature at all.

The characteristic θ points termed by Amiet as ‘near-singularities’ correspond to
four special configurations of the emission surface. In particular, the time steps tθ1

and
tθ4

concern the appearance and disappearance, respectively, of multiple emission times
and, consequently, of an unconnected region within the Σ domain. On the contrary,
the steps tθ2

and tθ3
correspond to a topology change of the retarded manifold, whose

tip section turns from a multiconnected to a single shape and vice versa. A sketch
of these critical steps is shown in figure 21 for the control surface SA rotating at a
tip Mach number of 1.1. As noted by Wells & Han (1993), the critical time steps
correspond to non-singular discontinuities in the time derivative of the Σ(t) function
and are responsible for the Amiet near-singular points.

An increase of the rotational velocity does not alter the essential features of the Σ

surface time evolution, even though the critical configurations occur at different time
steps. Figure 22 shows a qualitative comparison of the T1 and T2 time histories at
different Mach numbers. As expected, a higher value of the Mach number brings
forward θ1 and θ2 and postpones θ3 and θ4 along the time axis. For clarity, figure 23(a)
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Figure 20. (a) The time histories of the T1 and T2 integral terms for the biconvex SA control

surfaces rotating at M̂ tip = 1.1. (b) The sum of these terms, the T3 component and the overall
pseudothickness noise component.

shows the critical Σ configurations corresponding to the cited change of topology
(steps tθ2

and tθ3
) for the control surface rotating at M̂ tip = 1.3. Even though these

configurations concern an unconnected region of the Σ surface, there is no qualitative
difference with respect to the previous case. The contribution from the T2 integral
term still removes the discontinuity points affecting the T1 signature from the overall
pressure waveforms. Figure 23(b) shows the time derivatives of the Σ(t) functions
determined at a tip Mach number of 1.1 and 1.3. By increasing the rotational velocity,
the θ points move along the time axis and the curve exhibits the same numerical
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(a)

t = tθ2 tθ2 
< t < tθ3

t = tθ3

(b) (c)

~~ ~~

Figure 21. The critical time steps tθ2
and tθ3

correspond to a change of topology of the Σ
surface, where the tip section turns from (a) a multiconnected shape to (b) a single curve and
(c) vice versa.

Mtip = 1.0 1.1

1.3

ˆ

Mtip = 1.0ˆ

Figure 22. By increasing the rotational velocity the near-singular points affecting the T1

(solid lines) and T2 (dotted line) time histories move along the time axis. Nevertheless, the
sum of these two terms always provide a mutual cancellation of such fictitious features of the
resulting noise signature, so that the overall pressure waveforms (figure 19b) do not change.

behaviour of the integral terms waveforms. All the signatures depicted in figure 22
represent a part of the numerical solutions shown in figure 19 which do not exhibit
any slope changes and, above all, are not altered by the increased tip Mach number.
Therefore, rather than an acoustic pressure time history, the T1 waveform somehow
appears as a filtered representation of the Σ surface time evolution.

It is worth noting the similarity between the numerical results reported in figure 22
and figure 18, where the choice of a wider porous surface could suitably shift the
singular peaks owing to the Λ singularity. Here, the use of a spanwise enlarged
domain can shift the near-singular points owing to the Σ time derivative, but in
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Figure 23. (a) The configurations of the Σ surface at the near-singular time steps tθ2
and

tθ3
at M̂ tip = 1.3. (b) The first time derivative of the Σ(t) function for the porous surface SA

rotating at M̂ tip = 1.1 and 1.3 and the shift of the corresponding near singular points along
the time axis.

both cases the fluctuations are of a numerical nature and do not have any physical
meaning.

Unfortunately, it is not possible to carry out a real noise prediction at supersonic
speed for the UH-1H rotor because suitable aerodynamic data is not available.
Nevertheless, this numerical investigation shows the favourable aspects of the
emission-porous surface formulation in the numerical treatment of such critical
operating conditions. Whatever the actual meaning of the T1 integral could be,
this approach provides an estimation of the acoustic pressure by avoiding any direct
integration upon the body, which is a source of a singular behaviour on its own. This
feature notably simplifies the calculations and, above all, the proper interpretation of
the numerical results.

4.3. The ΣΛ formulation

The choice of the integration domain Sp of equation (2.9) is a very important issue.
In principle, the only requirement is to account for all the nonlinear sources in order
to achieve a converged solution. In practice, many other parameters can affect this
choice, such as the accuracy or availability of CFD input data or the dangerous
effects of the Λ singularity and the attempts to suitably manage them. We have
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Figure 24. (a) At the generic source point A on the end surface Se the local velocity v is
orthogonal to the outward normal vector n̂A; thus, Mn is zero and Λ= 1. (b) The same noise
signature as in figure 13 split into the contributions from lateral and end surfaces of the
integration domain.

seen also that the shape of the Sp cross-section can have a notable influence on
the numerical results. At first glance, the most reasonable choice appears to be the
use of a cylindrical domain as close to the blade as possible while including all the
transonic effects. Morgans at al. (2005) used such a domain to solve equation (2.8)
for conditions below the delocalization Mach number, with the aim of limiting the
computational effort and assuring the achievement of a converged numerical solution.
Nevertheless, this choice may not be the best, especially when the contribution from
supersonic sources must be taken into account.

Figure 24(a) shows three different source points placed on a cylindrical mesh. Points
B and C are located on a spanwise section of the lateral surface Sl and are related
to the outward normal vectors n̂B and n̂C , respectively. Point A belongs to the end
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Figure 25. The lateral surfaces Sl and (b) the end surfaces Se used as integration domains
and providing the noise predictions of figures 18 and 26.

surface Se and is associated to the outward normal vector n̂A. Furthermore, on the
Ω trajectory, the direction of rotation is shown so that the v vector represents the
local velocity. The value of Mn at points B and C depends on the rotational velocity
and the local angle between n̂ and v; on the contrary, at point A, Mn is always
zero since the local outward normal n̂A is perpendicular to v. Thus, at all points
placed on a surface characterized by an outward normal direction orthogonal to the
local velocity, Mn is zero and, consequently, Λ = 1. This condition is satisfied well by
the end surface Se of the adopted CFD mesh. Figure 24(b) shows the same overall
noise signature of figure 13 (with the integration domain corresponding to the mesh
boundaries k =15 and j = 70) split into the two contributions from the lateral and end
surfaces of the mesh. The spurious peak values due to the Λ singularity affect only the
signature from the lateral surface, while the contribution from Se exhibits a smooth
waveform completely free from any singular behaviour. This result provides a very
attractive suggestion. Looking at equations (2.6) and (2.7) it is possible to recognize
a fundamental aspect of the operators Ui and Li . By moving the integration domain
far enough from the blade both these operators tend to zero, since they approach the
conditions of the undisturbed medium. Thus, the density ratio ρ/ρ0 tends to 1, the
pressure p approaches the reference value p0 (so that Pij = (p − p0)δij becomes zero)
and the fluid is at rest (ui = 0). Then, from a theoretical point of view, the dangerous
effects from Λ can be simply (but rigorously) removed by using an integration
domain characterized by all nodes with Mn = 0 and extended along the outward
direction until the contribution from the lateral surface Sl is annihilated. We will refer
to this particular domain as to SΛ.

Figure 25 shows the integration domains used to determine the separate contribu-
tions from the lateral (Sl) and end (Se) surfaces to the noise predictions reported in
figure 18. These contributions are shown in figure 26. As expected, by increasing the
size of Sl , the noise signature tends to zero: at k = 35 the actual acoustic pressure
is zero everywhere except at the two nearly infinite pulses due to the Λ singularity
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Figure 26. The noise contributions provided by the lateral Sl (on the left) and end Se (on
the right) surfaces, corresponding to the different k layers of the CFD mesh. At k = 35, the
signature from Sl reduces to the spurious pressure peaks due to the Λ singularity, whereas
all the contributions provided by Se highlight the lack of any fictitious fluctuation and a
converging behaviour with respect to the experimental data.
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Figure 27. Comparison between the numerical solutions of equations (2.2) and (2.8) for the
UH-1H hovering rotor at Mtip = 0.85. (a) The thickness and loading terms are determined
through formulation 1A, while the quadrupole noise is computed by a volume integration.
Note in (b) the negligible contribution provided by the lateral surface and the slight fluctuations
due to the outer spanwise sections.

(figure 26a). On the other hand, the noise contributions provided by the end surfaces
Se only (figure 26b) directly converge towards the experimental data. In practice, the
signature corresponding to k = 35 exhibits the same waveform as in figure 5, although
the time range of computations has been extended in order to highlight the absence
of the singular behaviour.

Besides the removal of the Λ effects, the use of the integration domain SΛ is advan-
tageous from a computational point of view. Accounting for only the end surface Se

notably reduces the size of the emission surface Σp and, consequently, the requested
CPU time. The comprehensive nature of the contribution provided by the end surface
was noted by Delrieux et al. (2003). Nevertheless, in that paper the use of an integra-
tion domain limited to the end surface Se (at an intermediate distance from the
blade) was erroneously considered to cause an overestimation of the resulting noise
signature. The overestimation was probably due to an unsuitable location of the
control surface which did not include all the nonlinear effects and thus was not a
converged solution.

Concerning the choice of the porous surface, the use of an SΛ surface is also desir-
able for solving equation (2.8) where the Doppler singularity urges us to limit the
integration domain inside the sonic cylinder. In order to prove this assertion, a con-
dition below delocalization (corresponding to the UH-1H non-lifting hovering rotor
at Mtip = 0.85) has been considered. By exploiting the availability of the same CFD
Euler mesh, the integration domain with the boundaries k = 35 and j = 45 (rotating
at a subsonic tip Mach number of approximately 0.9) is used. Figure 27 shows a
comparison between the numerical solutions of equations (2.2) and (2.8) at such
operating conditions. In figure 27(a), the thickness and loading noise are determined
through formulation 1A while the contribution of the quadrupole source terms is
obtained through a full volume integration of the aerodynamic data. In figure 27(b),
the noise signature is split into contributions from the lateral and the end surfaces,
by using the same CFD mesh.

The agreement between the different noise predictions (which match well the experi-
mental data available in the literature, Purcell 1988) is excellent and the contribution
from the lateral surface is practically negligible. Furthermore, it is worthnoting that
the CPU time requested to perform the volume integration is about 56 s (on a
desktop PC), while the signatures from lateral and end surfaces have required 1.79 s
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and 1.57 s, respectively. Therefore, by limiting the calculations on the end surface Se,
the computing effort is practically cut in half. Moreover, the prediction of thickness
and loading noise has required 1.29 s, a time comparable with the overall noise
prediction provided by the integration on Se. Thus, the use of the porous surface
formulation could also be considered as a possible alternative to formulation 1A for
linear problems. The slight fluctuations affecting the noise prediction in figure 27(b)
represent the numerical instabilities due to the Doppler factor and the contribution
from the spanwise outer region. They correspond to the azimuth locations where the
emission surface first broadens (by changing the curvature of its leading edge, zone
A) and then narrows (by changing the curvature of its trailing edge too, zone B).

In practice, even at subsonic speed, by approaching the sonic cylinder, the sources
progressively lose the acoustically compact status, and the Σ surface suffers a notable
enlargement. Here, the integrals are not computed on the emission surface, but the
numerical solution suffers the effects of the high speed of the outer sources through the
presence of the |1 − Mr | singularity. The numerical results of figure 28 (b) concern
the noise predictions provided by equation (2.8) by three different integration domains,
corresponding to the Se end surfaces in figure 28(a) and rotating at a tip Mach number
of 0.86, 0.90 and 0.95, respectively. At the highest value of the rotational velocity,
the noise waveform is characterized by significant fluctuations, very similar to those
described in Ianniello (1999b) and also affecting the numerical results provided by
the volume integration technique. The use of the emission surface formulation allows
the removal of these oscillations since the critical behaviour of the high-speed sources
can be modelled in a more accurate way by simply using a finer mesh. Figure 28(c)
shows a comparison between the numerical solutions of equations (2.8) and (2.9)
(here denoted by RTF and ESF, respectively) obtained by using the same integration
domain (the Se surface at M̂ tip =0.95). Although a notable increase in required CPU
time (390 s), the noise prediction provided by the integration on the Σ surface is
notably smoother and almost free from any numerical instability. This result confirms
that by approaching the sonic cylinder, the robustness and reliability of the emission
surface approach becomes unquestionably superior with respect to the usual retarded
time formulation.

Note that the use of an SΛ integration domain allows us to write equation (2.9) in
the form

4πp′(x, t) =
∂

∂t

∫
ΣΛ

[
ρ0Un

r

]
τ

dΣΛ +
1

c0

∂

∂t

∫
ΣΛ

[
Lr

r

]
τ

dΣΛ +

∫
ΣΛ

[
Lr

r2

]
τ

dΣΛ, (4.3)

where, of course, ΣΛ represents the emission surface corresponding to SΛ. In the
following, we will refer to equation (4.3) as to the ΣΛ-formulation. This equation
represents a singularity-free expression and unlike the Farassat formulations 3 and
4 exhibits a very simple structure. In practice, it reduces the problem of HSI noise
prediction to the problem of modelling the ΣΛ domain. Within this context, it is
worthnoting that the shape of the SΛ porous surface is important, and neglecting
the contribution from the lateral surface Sl is not always appropriate. For instance,
at a low-speed BVI condition, where the noise radiation is highly directional and
out of the rotor plane, the use of an integration domain surrounding the blade is
an advisable (and probably unavoidable) choice. On the contrary, at high speeds
and delocalized conditions, the features of ΣΛ concerning the extent and the Mn = 0
condition are very useful and notably simplify the noise predictions.
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Figure 28. Comparison between the noise predictions for the UH-1H hovering rotor at
Mtip = 0.85 achieved by using the three different control surfaces reported in the top figure.
They correspond to an increasing spanwise coordinate, which is equivalent to an increasing
rotational Mach number M . Note how the use of the emission surface formulation (ESF)
removes the numerical instabilities affecting the retarded time formulation (RTF) and due to
the outer high-speed sources.

4.4. Old strategies, new perspectives

The results of the previous sections prove the effectiveness and capability of the
emission-porous surface formulation in the numerical prediction of noise. It has been
shown that a suitable choice of the integration domain can rigorously remove the
effects of the Λ singularity, so that equation (4.3) represents a comprehensive solution
to the problem of the HSI noise prediction at any range of rotational velocity.
All the same, this method requires the modelling of a supersonic emission surface
and a computational effort not comparable with the usual solving approaches used
at subsonic speed. Even though the use of an SΛ surface allows us to cut off the
contribution from the lateral surface Sl , the accuracy required to model the ΣΛ surface
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Figure 29. (a) A simple SΛ surface, formed by a cylindrical open surface placed outside the
sonic cylinder and with a size of 2 m along the Z-axis. (b) The intersection of this surface
with the rotor plane provides the lΛ line and the corresponding nΛ normal direction of
equations (4.4).

usually calls for a fine mesh and, consequently, a notable CPU time. At this stage,
an intriguing suggestion arises from the far-field approximation. Given that all the
aerodynamic data carrying out the noise signature are confined on the SΛ surface,
the use of a preliminary integration along a suitable direction lying on SΛ should
allow us to achieve an estimation of the overall noise through a simple line integral.
Then, following the same approach used by Brentner to define the quadrupole source
strength of equation (2.4), we assume

Ui =

∫
nΛ

Ui dnΛ, Li =

∫
nΛ

Li dnΛ (4.4)

as the pseudothickness and pseudoloading source strength, and rewrite equation (4.3)
in the following form

4πp′(x, t) =
∂

∂t

∫
σΛ

[
ρ0Un

r

]
τ

dσΛ +
1

c0

∂

∂t

∫
σΛ

[
Lr

r

]
τ

dσΛ +

∫
σΛ

[
Lr

r2

]
τ

dσΛ. (4.5)

For clarity, figure 29 shows the fundamental quantities of equations (4.4) and (4.5).
A cylindrical open surface (figure 29a), approximately located at the mesh boundaries
corresponding to a converged solution (k = 35 and j =70), represents the SΛ surface.
This domain intersects the rotor plane along the lΛ line (figure 29b) so that the
pseudothickness and pseudoloading source strength are determined (at each point
on lΛ) by performing an integration along the normal direction nΛ. Of course, the
ΣΛ and σΛ integration domains represent the emission surface and the emission
line corresponding to SΛ and lΛ, respectively. Equation (4.5) suffers the well-known
limits of the far-field approximation (rigorously valid at in-the-rotor-plane and far-
field observer locations), but exhibits two attractive features. First, it allows the
computation of the acoustic pressure time history through a simple line integration.
Even though an overall estimation of the CPU time should also concern the pre-
processing of the aerodynamic data, the computational effort becomes very limited
compared to the usual solving approaches. Secondly, equation (4.5) does not require
the modelling of an emission surface. When the contribution from supersonic sources
is significant, the σΛ integration domain must be suitably modelled outside the sonic
cylinder with a correct reordering of the retarded source points. Such a task can
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Figure 30. Noise predictions provided by equations (a) (4.3) and (b) (4.5), for the UH-1H
hovering blade at Mtip = 0.95. The general agreement of the simple one-dimensional integration
scheme with the experimental data is very satisfactory, despite a slight overestimation of the
acoustic pressure.

be achieved successfully by using the same identification criteria implemented in the
K-algorithm, but is notably simpler than modelling an emission surface, where a
regular mesh must be determined at each time step.

In order to test the capability of equation (4.5) in noise prediction, the trilinear
data-fitting procedure has been used to take the requested aerodynamic data from
the CFD mesh to the cylindrical open surface figure 29(a). Then, a simple integration
routine (based on the Simpson rule) has been used to determine the Ui and Li

quantities of equations (4.4). A 50 × 150 mesh (number of integration lines × number
of nodes on each line) symmetrically placed with respect to the rotor disk is used.
The extension along the outward normal direction covers 2m and corresponds to
the converged solutions presented in the previous sections. The numerical solutions
of both equations (4.3) (two-dimensional-integration) and (4.5) (one-dimensional-
integration) are reported in figure 30 for the in-plane observer located at 3.09R.
The comparison with the experimental data shows that the integration upon the
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ΣΛ surface (figure 30a) provides the expected signature, free from any fictitious
fluctuation and corresponding to the noise prediction of figure 5(b). On the contrary,
the integration upon the σΛ line (figure 30b) gives a slight overestimation of the
acoustic pressure, despite a general good agreement with the experimental data. This
overestimation is due to the restrictions of the far-field approximation. In fact, the
collapse of the aerodynamic data along the nΛ direction presumes the equality of the
emission times at source points symmetrically placed with respect to the rotor plane.

At the same time, the observer must be located far enough from the body in order
to consider the nΛ line as a dot-shaped source. The SΛ surface in figure 29 fully
satisfies the first assumption. Nonetheless, the lΛ line of figure 29(b) can hardly be
considered as a set of dot-shaped sources by an observer located at only 3 radii from
the rotor hub. Such an approximation becomes valid by increasing the blade–observer
distance. Figure 31 shows the comparison between the noise predictions provided by
equations (4.3) and (4.5), by progressively moving the location of the in-plane observer
away from the blade, up to a distance of 2, 5, 15 and 30 m from the rotor hub. At only
2m, the difference between the noise predictions is considerable and still the solution
from the one-dimensional-integration scheme appears overestimated with respect to
the two-dimensional-integration result. On the contrary, at a reasonable distance from
the blade (greater than 10R), the numerical predictions of noise match perfectly.

This result confirms the effectiveness of equation (4.5). Furthermore, the comparison
between the CPU time required to achieve the overall noise predictions in figure 30
is impressive. The computation of 256 steps (at a time resolution of 2048 steps per
period) required 208.5 and 1.1 CPU seconds for equations (4.3) and (4.5), respectively.
Thus, despite the restrictions mentioned, the use of the far-field approximation
provides a reduction of the computing costs of two orders of magnitude.

5. Conclusions
The results presented in this paper prove the effectiveness of the emission-porous

surface formulation in the prediction of noise from rotating blades. This numerical
approach allows us to evaluate the contribution of multi-emissive sources at high-
delocalized conditions and removes any limitation on the blade rotational velocity.
The robustness of the new K-algorithm in modelling a supersonic emission surface
has been severely tested on complex and anomalous configurations. The availability
of such a reliable tool enables the investigation on the behaviour of the Λ singularity
affecting the acoustic integrals at supersonic speeds. This analysis confirms the numer-
ical nature of the singularity, reveals its own effects on noise predictions and suggests
a practical way to remove them. A general discussion on the numerical solution of the
FW-H equation at supersonic speed and the physical meaning of the integral terms is
addressed. The evaluation of the pseudo-thickness component of equation (2.9) and
the comparison with previous computations of what is addressed as a ‘supersonic
thickness noise’ seem to confirm that, approaching the speed of sound, the numerical
solution of the FW-H equation has to be pursued globally, since the different
integrals lose their physical meaning. Through a strategic choice of the integration
domain (aimed at removing the numerical singularities), the ΣΛ formulation has been
proposed. This approach makes the HSI noise prediction straightforward and, like
formulation 1A for linear problems, reduces the estimation of the acoustic pressure
field to a simple post-processing of the aerodynamic data, regardless of the range
of the rotational velocity. Furthermore, for in-plane and far-field observer locations,
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Figure 31. The comparison between the noise predictions provided by the ΣΛ (two-
dimensional) and σΛ (one-dimensional) formulations confirms both the validity and the restric-
tions of the far field approximation. In the actual far field, the different numerical solutions
match perfectly.

the coupling of the ΣΛ formulation with the far-field approximation can be used to
avoid the construction of the emission surface and provides a reliable noise prediction
through a simple one-dimensional integration that is computationally efficient.
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Figure 32. (a) The f (τ ) curves of a supersonic source at two subsequent (t2 > t1) observer
times. Note the mid-root τ2 and the opposite sign of both ḟ (τ2) (with respect to ḟ at the other
two roots) and the time interval (t2 − t1) with respect to (τ t2

2 − τ
t1
2 ). (b) A section map of class

C =2 highlighting the two jumps Jin and Jout in the ordered sequence of nodes, at the iin and
iout values of the i (chordwise) index.

Appendix. The numerical construction of Σ

This Appendix summarizes the main features of the K-algorithm, by focusing
the attention on the techniques developed to construct the retarded configuration
of a curve in a three-dimensional space. Within this context, we will denote such a
curve as the section S in order to remind us of the generical (spanwise) section of a
structured mesh (see § 2) and indicate ΣS as its retarded configuration. The adopted
backward-in-time integration scheme requires, at each observer time t , the evaluation
of the emission times τ through the well-known equation:

f (τ ) = τ − t +
r

c0

= τ − t +
|x(t) − y(τ )|

c0

. (A 1)

The f (τ ) curves of a multi-emissive supersonic source at two subsequent observer
times t2 > t1 (figure 32a) reveal some important issues. Unlike the external roots τ1

and τ3, the mid-root τ2 exhibits a negative sign for the first time derivative ḟ = ∂f/∂τ

and moves in the opposite direction with respect to the time axis. This last feature
provides a sort of contra-rotating motion of the corresponding retarded point y(τ2).
On the contrary, no essential feature distinguishes τ1 and τ3. As explained in a previous
paper (Ianniello 1999a), within the time interval corresponding to the maximum noise
emission, these external roots are characterized by an opposite sign of the second
time derivative f̈ = ∂2f/∂τ 2, which is related to a change of curvature in the emission
surface. The first version of the K-algorithm used this feature to model the retarded
configuration of each spanwise section. Unfortunately, the sign of f̈ changes twice in
a revolution period, so that the procedure fails in contructing the retarded domain in
the whole range [0, 2π] or when a very large domain is taken into account. Thus, we
have to establish a more general criterium to locate the retarded points correctly and
construct ΣS.

A.1. The section map and the identification criteria

Let us indicate with m(= 3) the maximum number of emission times, N the number
of ordered nodes of the section S and i the index which covers S from 1 to N . At
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this stage, we can focus attention on a open section, where the nodes i1 and iN are
univocally identified; nevertheless, the numerical treatment of a closed section may
be derived easily from the open one. For a supersonic section S, we suppose that
we have all the emission times and the corresponding retarded spatial coordinates
available at a fixed observer time t . These values can be efficiently determined by
solving equation (A 1) through the crossed iteration scheme (Ianniello 2001).

The retarded configuration ΣS can be associated to a flag array (N × m), whose
elements are equal to 1 (or 0) depending on the existence (or not) of the emission
time. This array is named a section map and exhibits the following features: (a)
all the elements of the first column are equal to 1; (b) at each row, the elements
of the second and third columns must be the same. These features arise because
equation (A 1) always exhibits one or three roots. The section map represents a useful
working-tool and holds some fundamental information about the topology of ΣS.
Its elements act as pointers to the fundamental arrays of the emission times τ and
retarded coordinates y. Moreover, they enable the identification of the possible jumps
between two subsequent supersonic sources experiencing (at fixed t) a different status.
These jumps point out the occurrence of a transition region within ΣS and the need
for a suitable reordering of the retarded coordinates. Because of the importance of
the role, the number of jumps in the section map has been named the class (C) of
the section.

In order to understand how the map can be used to construct ΣS, let us consider
a section composed by only twelve nodes and characterized, at a fixed observer time
t , by the section map shown in figure 32(b). The section includes one multi-emissive
region (4 nodes) and the map identifies two jumps (C = 2) within the ordered sequence
of nodes corresponding to the two indices iin and iout of the boundary (multi-emissive)
sources. The criterium used to establish how to locate the retarded coordinates y is
based on a sort of time-continuity assumption. The question is: ‘within ΣS, what is the
next point with respect to the (single-emissive) node yiin−1 and the previous point with
respect to (single-emissive) node yiout+1?’ Because of the mentioned contra-rotating
motion, the nodes corresponding to the mid-root y(τ2) are left out. The remaining
choice between y(τ1) and y(τ3) (both at input and output jump) is governed by
the emission phenomena so that the correct selection corresponds to the retarded
source with the emission time closer to the next/previous single-emissive node. Thus,
at the jump points identified by the section map, the following link-parameters are
determined:

Jin :

{
Lin

1 = |τ 1
iin

− τ(iin−1)|,
Lin

2 = |τ 3
iin

− τ(iin−1)|,
Jout :

{
Lout

1 = |τ 1
iout

− τ(iout+1)|,
Lout

2 = |τ 3
iout

− τ(iout+1)|,
(A 2)

where the superscript for τ denotes the column of the section map and, corres-
pondingly, the number of the f (τ ) root. The identification criteria mentioned
correspond to the following three different cases:

(i) Lin
1 < Lin

2 and Lout
1 < Lout

2 .
In this case, y(τin−1) connects to y(τ 1

in) and y(τout+1) to y(τ 1
out ) and the multi-emissive

sources give rise to an unconnected patch. Generally, such a situation corresponds
to the early occurrence of a multi-emissive status of the supersonic sources and the
separate region is destined to grow.

(ii) Lin
1 > Lin

2 and Lout
1 > Lout

2 .
In this case, y(τin−1) connects to y(τ 3

in) and y(τout+1) to y(τ 3
out ). Still, the retarded

configuration ΣS(t) exhibits a separate region, but the emission of the sources with
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Figure 33. A summary of the identification criteria established by the link paramenters L
and used to reorder the retarded coordinates y in presence of a multi-emissive branch within
the section map.

a single τ is a subsequent event with respect to the emission of the multi-emissive
sources. Then, the unconnected patch is going to collapse.

(iii) Lin
1 < Lin

2 and Lout
1 > Lout

2 or Lin
1 > Lin

2 and Lout
1 < Lout

2 .
Here, the link-parameters require the link of y(τin−1) to y(τ 1

in) and y(τout+1) to y(τ 3
out ) (or

y(τin−1) to y(τ 3
in) and y(τout+1) to y(τ 1

out )), so that the multi-emissive region is inevitably
included within sources with a single τ . In both cases, the retarded configuration ΣS(t)
represents a single manifold.
A sketch of the section map corresponding to the different cases helps us to understand
the order of nodes in ΣS and is shown in figure 33. It is worthnoting that the
second column of the map is always swept in a direction opposite to the i index,
thus fulfilling the kinematic requirements of the mid-roots τ2. The cases shown in
figure 33 are relatively simple and correspond to retarded configurations which could
be constructed also by the old version of the algorithm. In particular, the cases (i)
and (ii) correspond to the so-called mixed section, while both cases (iii) represent a
partial section, as cited in Ianniello 1999a, 2001.

Nevertheless, the proposed identification criteria enable the modelling of much more
complex configurations of ΣS, characterized by the presence of many unconnected
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Figure 34. All the spanwise sections composing the single region A and the triple region
Bi (a) are of class C = 4; nevertheless, the identification criteria and the link parameters
determined on the corresponding section maps (schematically shown in b) provide the different
topology of the two regions.

patches. Obviously, the class of section is not sufficient to identify ΣS. For instance,
figure 34(a) shows two spanwise regions of an emission surface Σ where all the
retarded sections have C =4. The corresponding section maps reported in figure (b)
clearly show that both the multi-emissive branches can link up with the single-emissive
sources in order to constitute a single manifold (dark region, A), or, alternatively, give
rise to three separate strips (light regions, Bi). Then, the type (T) of the section is fixed
by its class and the number of unconnected regions arising from the multi-emissive
branches, which is determined by the identification criteria. The identification of the
type T of ΣS is a fundamental step in the construction of Σ . It enables the assemblage
of the retarded sections into homogeneous patches and an effective management of
the appearance and disappearance of fragmented regions. Note that the number of
retarded nodes y is usually different at subsequent sections so that a data-fitting
procedure must be used (on each patch) to achieve a regular mesh and compute the
acoustic integrals through a simple zero-order formulation.
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(a) (b)

Figure 35. (a) A Σ surface of the sphere in figure 1 as determined for the starting mesh
40 × 101; it highlights the need for a spanwise mesh refiniment at the transition regions between
subsequent patches of different type. (b) The additional patches computed by the spanwise
mesh refinement procedure (dark regions).

A.2. The self-adaptive grid

Whatever the resolution of the starting mesh may be, an accurate evaluation of the
Σ(t) function requires a step-by-step modification of the numerical grid. This task
is essential to achieve a reliable prediction of noise and concerns both the spanwise
and chordwise grid resolution. Figure 35 shows an emission surface of the sphere
of § 2 (test-case 1), corresponding to the starting mesh 40 × 101. Despite the correct
reconstruction of the different patches, it is evident that there is a need for a grid
refinement along the ‘span’, at each transition region between two subsequent patches
of different type. At any observer time t , this aim is achieved: (a) by locating an
additional section between the boundaries of the adjoining patches; (b) by determining
the retarded configuration of the new section and the corresponding type T; (c) by
assuming the section as the new boundary of the region of the same type T. The
procedure is repeated until a prescribed minimum distance between the subsequent
patches is obtained. A numerical problem arises if the additional section corresponds
to neither type of the neighbouring patches. This condition has been identified as
a blackhole, since it can be a recursive problem (depending on the grid shape and
resolution) and is difficult to manage. The present version of the K-algorithm is able
to treat a blackhole condition of order 3 (where a different T occurs three times
during the refinement procedure).

Besides the spanwise grid refinement, a self-adaptive scheme must usually be
adopted, also along the ‘chord’ direction. There are two reasons for that. First, the
retarded source points tend to run away from the Doppler line (1−Mr ) = 0 (Ianniello
1999a) which corresponds to the jumps between multi-emissive and single-emissive
sources. This behaviour causes a notable sparseness of nodes, especially in the region
overlapping the sonic cylinder. Secondly, the multi-emissive branch occurring in a
retarded section can be constituted by only one or two sources. In both cases,
the data-fitting (spline-based) procedure devoted to construct the different patches
requires some additional points to construct the different patches correctly. Thus, a
prescribed number of nodes is added at each jump identified in the section map.
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